

BARISOL

Next Generation Spacer Technology for Paints & Coatings

August 2020

Today: >3,500 dispersion and wetting additives for automotive, architectural, inkjet and coil coatings

The Challenge

Achieve pigment stabilization while drastically reducing the concentration of organic dispersion/wetting additives and all negative side effects in the product

Conventional Dispersion Additives

Electrostatical Stabilization

Sterical Stabilization

Different Dispersion Additives in Comparison

Dispersion	Absorption on	Pigments	Stabilization	Viscosity	Water	Foaming	Binder	Cost
Additives	Inorganic	Organic	Efficiency	Reduction	Sensitivity	Tendency	Compatibility	
Polyacrylates	good	no	good	good	very high	fair	very poor	low
Phosphonates	good	no	good	good	very high	fair	poor	low
Hydrophobic mod. Polyacrylates	good	no	good	good	high	higher	poor	medium
Nonionic "Surfactans"	good	good	good	good	medium	very high	good	medium to low
lonic "Surfactants" (Sulfates, Phosphates)	good	fair	good	good	medium	high	fair	medium
Dream?	good	good	good	good	very low	very low	good	low

Potential Solution: Electrosterical Stabilization

Dispersion	Absorption on Pigments		Stabilization	Viscosity	Water	Foaming	Binder	Costs
Additives	Inorganic	Organic	Efficiency	Reduction	Sensitivity	Tendency	Compatibility	
Polymeric Electrosteric Active Dispersants	good	good	good	good	low	high	depends	high

Solution: Substitution of Organic Additives by Electrosterically stabilizing Particles

Which particles are suitable for paints and coatings?

- Refractive index
- Particle size
- Inertness
- Versatility

Functional inorganic additive concentrate for charged pigment surfaces

→ Low-viscous dispersion of electrosterically stabilizing nano barium sulfate = Barisol

Nanoparticles as Physical Spacer

Barisol particles move between pigments as spacers – physically preventing sedimentation/agglomeration of pigment particles

- Electrosteric stabilization at typical coating pH of 4 11
- Without influencing water resistance of dried film
- Without causing foam or polymer-incompatibility with different binder systems

Positive Effects of Barisol

- Robust pigment stabilization
- Avoidance of flocculation and sedimentation
- Higher deagglomeration efficiency
- Additive cost reduction
- Color strength increase
- Viscosity reduction
- Process cost reduction
- VOC Reduction

Innovative Production of Barisol

nano Barium Sulfate is continuously produced in a patented MicroJetReactor (MJR[®])

Benchmarking shows Key Advantages

Comparison of particle sizes of Barisol vs. a conventional BaSO₄ dispersion additive

Normalized particle size distribution

Advantages of Barisol Approach

From 12 - 24 h down to 2 - 4 h Reduced milling time: Reduced milling additives: > 90 % Reduced dispersion agents: > 90 % Reduced wetting additives: > 50 % > 6 months at 60° C Sedimentation stability: VOC: < 10 % (in some cases < 5 %) due to better Pigment distribution Improved stabilization of pigments: Higher optical density

Car Paints

Example: Printex U Carbon Black paste

<u>Approach</u>	<u>Conventional</u>	Barisol
Process time	2 to batch > 40 hours	5 to batch 10 – 20 hours
Color strength	100%	110 – 130 %
Particle Size	< 5 µm	< 1µm
Resin	10 – 20 %	None
	One paste per resin	One fits all!

Architectural Paints

Example: TiO₂ Slurries

Conventional

Only for architectural paints

Polyacrylate stabilization

Every application requires own slurry

Barisol Approach

Flexible for all applications

No sterical additive

One fits all!

Filler Slurries

Example: Talcum, BaSO₄, CaCO₃ Slurries

Conventional

Sterical additive

Sedimentation vs. price

Barisol Approach

Sterical additive-free

No sedimentation – cost reduction

Color Cards

Clear Advantages of Barisol

Dispersion	Absorption on Pigments		Stabilization	Viscosity	Water	Foaming	Binder	Cost
Additives	Inorganic	Organic	Efficiency	Reduction	Sensitivity	Tendency	Compatibility	
Polyacrylates	good	no	good	good	very high	fair	very poor	low
Phosphonates	good	no	good	good	very high	fair	poor	low
Hydrophobic mod. Polyacrylates	good	no	good	good	high	higher	poor	medium
Nonionic "Surfactans"	good	good	good	good	medium	very high	good	medium to low
lonic "Surfactants" (Sulfates, Phosphates)	good	fair	good	good	medium	high	fair	medium
Polymeric Electrosteric Active Dispersants	good	good	good	good	low	high	depends	high
Barisol	good	good	good	good	very low	very low	good	low

Broad Application Opportunities

- Automotive coatings
 - Fillers
 - Base coats
- Architectural coatings
 - Decorative paints interior
 - Protective / decorative paints exterior
- Inkjet printing
- Coil coating

Barisol Approach: Disruptive!

- Today: > 3500 dispersion and wetting additives
- Barisol: One fits for all applications (high versatility)
- Significant fewer side effects
- 50 % shorter time-to-market
- Improved Economics
- Lower VOC

- New color production process with significant benefits:
 - Much shorter process times
 - Reduced process costs
 - Higher product performance

nanoSaar AG

Würmstrasse 4 82319 Starnberg Germany

Dr. Michael Steiner CEO

Phone: +49 8151 9590 221 Mobile: +49 176 6164 7872

m.steiner@nanosaar.com